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ABSTRACT 
This article illustrates improved methods of combining forecasts.  Its objective is to 
describe how exponential smoothing methods are optimized within least squares 
equations.  Traditionally, forecasts have been optimized first before being combined.  
Advantages of using a single seasonal index variable rather than multiple (11 for 
monthly) indicator variables are also illustrated.  By using these improvements plus 
judgmental modification in unrestricted least squares equations, combined forecasts 
models are derived that rival all other econometric models in out-of-sample predictions. 
Hence, this paper describes improvements that produce practical models with increased 
out-of-sample accuracy, broader applicability, and judgment modification capabilities. 
JEL Classification: C53 
 
 
INTRODUCTION 
In today’s dynamic economy, each business must select the forecasting methods that help 
their particular situation. This forecasting dilemma is further complicated by the fact that 
most economic conditions are constantly changing.  Therefore, the practice of combining 
forecasts that are conducive to a variety of economic conditions has gained popularity 
(Batchelor and Dua 1995).  Unrestricted least squares is an extremely popular and highly 
regarded method of combining forecasts (Granger and Ramanathan 1984).  The objective 
of this paper is to describe improvements to this effective forecasting method by 
optimizing exponential smoothing forecasts within an unrestricted least squares equation.   
This method is original with the authors and has yet to be explored.  Also, the use of a 
single seasonal index variable rather than traditional indicator (dummy) variables has only 
recently been committed to writing (Landram. et al., 2004, 2008a) and is effectively 
employed  in this article.  These improved methods expand the capabilities of combined 
forecast models enabling them to become more practical and effective. 
 Consider the quarterly forecasting equation 
 

           Ŷt = b0 + b1Xt + b2Sj + b3Ct                                         (1) 
 

where Ŷt are the computed response values, Xt are for trend values (Xt = 1, 2, ... n), Sj are 
the quarterly seasonal indices repeated each year, and Ct are cyclical factors.  In general,  
the accuracy of least squares predictions by (1) are superior to the accuracy obtained from 
the traditional time series decomposition method: 
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           TtSjCt = Tt*Sj*Ct,       (2) 
 

where Sj and Ct are defined in (1) above.  Tt are trend estimates;  Tt = b0 + b1Xt.  When 
the accuracy of (2) approximates that of (1), include the multiplicative term (2) in (1);  
 

           Ŷt = b0 + b1Xt + b2Sj + b3Ct + b4TtSjCt.                            (3) 
 
Both additive and multiplicative relationships among time series components are 
described by (3).  Although an additional degree of freedom is consumed, (3) will 
command more (never less) accuracy than its traditional decomposition counterpart 
described by (2).  Stated differently, (3) provides a superior alternative to the traditional 
time series decomposition method of forecasting. 
 
Exponential Smoothing 
   The inclusion of exponential smoothing measures as a time series cyclical 
component often brings additional out-of-sample accuracy to the model; 

            Ŷt = b0 + b1Xt + b2Sj + b3Ct + b4Ft,                          (4) 
where Ft represents simple exponential smoothing forecasts:  
 
 Ft = αYt-1+(1-α)Ft-1      (5) 
 
However, exponential smoothing measures should be optimized within the least squares 
equation.  A complete description of this optimization process is illustrated later by an 
example along with how it enhances the accuracy of out-of-sample predictions.  Again, 
the practice of combining forecasts that are conducive to a variety of economic 
conditions will increase the accuracy of most predictions.  When including forecasts 
from exponential smoothing methods, it is best to optimize these forecasts within the 
least squares framework.  Although the simple exponential smoothing method is the 
easiest to illustrate and comprehend, all exponential smoothing methods can be 
combined and optimized within least squares equations.  Since Ft and the cyclical factor 
Ct both measure cyclical movement, they are often collinear with one needing deletion. 
   
Indicator Variables   
 Using indicator (dummy) variables, the approximate accuracy of (1) is 
obtained from (6): 

            Ŷt = b0 + b1Xt + b2D2 + b3D3 + b4D4 + b5Ct,                                                 (6) 
 

where  Dj = 1 if quarter j,  j = 2, 3, 4,  otherwise 0, and Xt and Ct are defined in (1).  The 
indicator variable method of including seasonal variation is described in most statistical, 
forecasting, and econometric textbooks.   However, the need for k-1 dummy variables to 
represent a k level qualitative variable brings severe limitations.  Monthly seasonal 
variation must be represented by 11 dummy variables; 22 are needed if interaction is 
involved.  Therefore, indicator variables in forecasting soon become impractical.   
 
Benefits    
 The objective of this paper is to explain how greater accuracy is obtained by 
optimizing exponential smoothing forecasts within least squares models.  Traditionally, 
these forecasts are optimized first and then included in the model.  In achieving this 
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objective, other innovative methods just beginning to frequent the literature are 
described.  This paper brings further attention to employing the single seasonal index 
variable Sj in (1) rather than multiple indicator variables.  Observe that Sj in (1) and (3) 
provide superior alternatives to the traditional decomposition method of forecasting.  
This model also possesses the judgmental capability for including structural breaks and 
event modeling variables.  Using unrestricted least squares, these improvements produce 
practical forecasting models with increased accuracy for future predictions.  Since these 
models are easy to derive and understand, they will quickly gain popularity in the 
workplace. 
 
 
COMBINING FORECASTS   
       Granger and Ramanathan (1984) argue that combined forecasts from several 
methods outperform forecasts from a single method.  They point out that values from 
discarded forecasting models still contain useful information about the underlying 
behavior of Yt.  When biased forecasts are included in a least squares equation, the 
intercept adjusts for the bias.  Hence, it is important to use least squares equations with an 
intercept – unrestricted least squares.   The authors totally agree with Granger and 
Ramanathan that the common practice of obtaining a weighted average of alternative 
forecasts should be abandoned in favor of least squares equations with an intercept.  
However, in this article the research of combining forecasts is carried one step further.  
Forecasts from naive time series methods are optimized within the least squares equation. 
 
Concepts and Notations   
 The inclusion of Xt, Sj and Ct in (1) is easily justified.  When combining 
forecasts, time series components (trend, seasonal, and cyclical) along with other 
forecasts generally make a significant contribution in explaining the behavior of the 
response variable Yt.  Of course, this assumes the model is not overspecified.  
Overfitting inflates forecast error variances (Landram et al, 2008b) and is the 
downside to combining forecasts.  Therefore, out-of-sample criteria are employed 
(Landram, et al., 2005). 
 
Least Squares Seasonal and Interaction   
 When seasonal variations changes with time, include an interaction variable 
between the cyclical Ct and the seasonal indices Sj: 
 

           Ŷt = b0 + b1Xt + b2Sj + b3Ct + b4CtSt,                      (7a) 
 
where CtSt.= Ct*St.   If Xt and Ct are held constant, a change in Yt given a change in Sj is 
dependent upon the value of Ct: 

           Ŷt = [b0 + b1Xt + b3Ct] + [b2 + b4Ct]Sj.                  (7b) 
 
Similar statements may be made concerning the interaction between Xt and St.  Observe, 
that a three way interaction term (Xt*Sj*Ct) approximates the decomposition of a 
multiplicative time series forecast described by (2).  Barsky and Miron (1989) 
convincingly argue against deseasonalizing time series data.  They maintains that 
considerable knowledge can be obtained from the interaction between seasonal and 
cyclical components. 
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Event Modeling 
  Forecasting macroeconomic time series is notoriously difficult.  Structural 
breaks in the deterministic components are often the most damaging.  An example in 
predicting future housing starts is discussed later.  In this example, the following forecast 
model is employed with dummy variables to adjust for our recent decline in the housing 
market: 

            Ŷt = b0 + b1Sj + b2Ft+b3Dj + b4SjDj + b5Hj,                  (8) 
 
where H = 1 if  ≥ quarter 4, 2005, otherwise 0 .  The dummy variable Hj adjusts for the 
abrupt decline in the housing market.  Also in an effort to make quarters 3 and 4 more 
pronounced, the dummy variable D is employed along with the interaction variable SjDj; 
where Dj = 1 if quarter 3 or 4, otherwise 0.  The time series cyclical component Ct is 
collinear with the exponential smoothing Ft values and therefore deleted. The trend 
variable Xt was found insignificant and also deleted.  Forecasting model (8) is explained 
later in greater detail along with the optimization of Ft within the least squares framework.   
 
Statistical Modeling 
 Forecasting methods known to have different accuracies when used alone may 
perform quite differently when combined with other variables in a least squares equation.  
Here lies a major weakness of most combination of forecasts methods.  Most forecasters 
assign their own prescribed weights thereby not recognizing the capability of unrestricted 
least squares.  Additional insight into combined forecasts and into regression analysis in 
general is obtained by defining redundant and synergistic variables in the following 
manner.   
(a) Redundant or multicollinear variables partially duplicate the information of other 
variables.  Therefore, these variables possess insignificant partial t values and significant 
simple t values.  They are significantly related with Yt when used alone but can not be 
used effectively in a combination with other variables.   
 (b) Synergistic variables are the reverse.  These variables possess significant partial t 
values but insignificant simple t values.  They are insignificant when used alone but 
significantly related with Yt when used in a combination with other variables.  These 
variables make a unique contribution even though they are inaccurate when used alone. 
Furthermore, synergism in regression is more common than one might think (Shieh 2002).  
(c) Other variables are significantly related with Yt at both the partial and simple levels.  
The reverse is also true; some variables may be insignificant when used alone and when 
used in a combination with other variables. 
  The above definitions provide additional insight into regression analysis and in 
the rationale used when combining forecasts.  A forecast may be highly accurate alone but 
inaccurate (redundant) when combined with other forecasts.  Other forecasts may be 
inaccurate alone but highly accurate (synergistic) when used in a combination with other 
forecasts.  Hence, when combining forecasts, let the unrestricted least squares model 
assign appropriate weights to the forecasts.  This discussion explains why inaccurate 
forecasts are sometimes needed and why accurate forecast are sometimes not needed. 

   
Comments   
 Since combined forecast models are subject to the same statistical modeling 
properties as other least squares regression models, consider the following comments. 
1. Single forecasts should be optimized not with the objective of being used alone but with 
the objective of being used with other explanatory variables.  Criteria used in this 
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optimization should not only be goodness of fit  but also goodness of prediction criteria. 
2. In regression the sum of squares error (SSE) cannot increase and usually decreases 
when additional variables enter the model.  Therefore, R2 is biased.  As additional 
variables enter the model, R2 becomes upward biased with regard to in-sample fitted 
values.  This may lead to the model becoming over specified. 
 3. Combined forecast models are subject to the same bias of omission (specification error) 
as other regression models.  Since the predicted values of various forecast methods are 
used as input variables when combining forecasts, emphasis should be placed on the 
proper selection and optimization of these methods.     
4. In combining forecasts, variables are obtained from single forecasts, time series 
components, leading indicators, and econometric data.  Also, be cognizant that these 
models possess event modeling, judgment modification, and even piecewise regression 
capabilities.  
5. Kutner et al. (2005) wisely suggest that any violation of the classical regression 
assumptions be treated first as specification error and then as needing structural 
modification. 
 6. Since goodness of fit does not guarantee goodness of prediction, PRESS (Myers, 
1990) and P2 (Landram, et al. 2005) are used in measuring out-of-sample predictions.  
 
Structured Judgmental Modification 
 A major problem with all forecasting methods is their inability to determine 
changing conditions in advance.  Forecasting methods and time series values appropriate 
for one period are not necessary appropriate in another period.  Therefore, structured 
judgmental modification is needed to help predict when these changes will occur and the 
effect these changes will have on the behavior of their forecasts. 
  
Moving Seasonals   
 When using a constant seasonal index, it is assumed the seasonal variation is not 
moving -- is not becoming stronger or weaker.  However, if a seasonal index for say 
quarter 1 possesses a trend, a moving seasonal index needs to be constructed.  These 
effective, but often forgotten, indices are described in older textbooks (Croxton and 
Cowden, 1955) and employed when average seasonal indices do not adequately describe 
current seasonal variations.  When forecasting future values of Yt, moving seasonal 
indices may be obtained judgmentally.  This allows the model to possess structured 
judgmental modification capabilities.  
 
Judgmental Modification   
 While there is widespread acceptance that structured judgmental modification 
of statistical models improves forecasts, there are issues concerning how the process 
should be structured (Lawrence, Edmundson, and O’Connor 1986).  Bunn and Wright 
(1991) remind readers that model specification, variable selection, how far back to go in a 
time series, and special event modeling are judgmental.  The use of moving seasonal 
indices and optimizing exponential smoothing forecast within a least squares equation is 
in agreement with the structured visual aids promoted by Edmundson (1990).  The idea is 
to obtain judgmental modification at the level of time series components.  Thus, 
treatment of forecast values and time series components as explanatory variables in 
regression enables forecasters to employ structured judgment modifications at effective 
levels. 
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HOUSING STARTS:  COMPARING FORECASTS 
In an effort to convey ideas concerning the manner in which forecasts are 

optimized within a least squares equation, the following example is given.  Housing 
starts is a strong indicator of our construction industry, public sentiment, and the health 
of our nation.  Figure 1 reveals housing starts have little trend but a substantial cyclical 
movement. Although the declining US economy may have a slow recovery, this 
downward trend does not adequate predict future housing starts.  Therefore, the 
combined forecasts model described in (8) is employed in predicting future housing 
starts.  In Figure 1, predictions from (8) are shown by the line projected from 2008 
through 2015.   
     
Time Series Components   

Table 1 reveals the relevance of the various time series components including 
the simple exponential smoothing component Ft.  Note, R2 increases from 0.671 to 0.919 
and P2 increases from 0.624 to 0.881when the exponential smoothing variable Ft is 
entered and optimized within the least squares equation.  This optimization procedure is 
discussed below.  As shown by (9) in Table 1, when the exponential smoothing forecasts 
are optimized first (α = 0.39) and then entered into the model, R2 and P2 increase to 0.842 
and 0.821, respectively. 
 

TABLE 1 

COMPARING FORECAST MODELS 

 

Forecasting Model     R2    Adj R
─2

    PRESS    P2 

(5)       Ft = αYt-1+(1-α)Ft-1   0.454     0.454 

(1)      Y
^

t = b0 + b1Xt + b2Sj + b3Ct      0.671    0.660 206,280 0.624 

(9)      Y
^

t = b0 + b1Xt + b2Sj + b3Ct + b4F*
t       0.842    0.833 98,573 0.821 

(4)      Y
^

t = b0 + b1Xt + b2Sj + b3Ct + b4Ft     0.919    0.915 63,505 0.881 

(8)  Y
^

t = b0 + b1Sj + b2Ft + b4Dj + b4SjDj + b2Hj   0.948    0.945 33,233 0.940 

       F*
t   where α = 0.39      Ft  where α = 0.95    

 
Modeling  

 Both a variable elimination procedure and event modeling are employed to 
obtain (8):   

 

            Ŷt = b0 + b1Sj + b2Ft+b3Dj + b4SjDj + b5Hj,                  (8) 
 

The constant seasonal index Sj needed help in accentuating seasonal variations.  This 
assistance is obtained from the dummy variable (D = 1 if quarter 3 or 4) that underscored 
seasonal variability.  As stated above, Hj, is used to adjust for our recent decline. 
      
Optimization   
 The optimization of exponential smoothing methods within a least squares 
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structure is conducive to spreadsheet operations.  Figure 1 depicts these operations with 
the simple exponential smoothing equation (5) being placed in column D.  Let the value 
of α be in cell D2.  Let R2 and adjusted R2 be in say cells B2 and B3.  These values are 
computed in another spreadsheet space or worksheet and merely referenced in cells B2 
and B3.  The PRESS and P2 statistics are also referenced in a similar manner. Although 
this procedure is illustrated with spreadsheet operations, it can easily be conducted on 
statistical software.  Each time one changes the value of α, spreadsheet operations 
DATA>DATA_ANALYSIS>REGRESSION are performed and R2 is examined.  Using 
this procedure R2 is maximized when α = 0.95.  Table 1 shows that α = 0.39 when R2 for 
(5) is optimized and the Ft values are entered into (9).  The value of α becomes 0.95 
when R2 is optimized within (4) and (8). 
 
 

  Figure 1. Housing Starts                           (1988 to Q2, 2008)
R2 = 0.948 α = 0.95 PRESS= 33,233

Adj R2 = 0.945 P2 = 0.944

Dates      Y      Sj    Ft D SD H Dates Y   Y^
Mar-88 297.2 0.857 297.2 1 0.857 0 Mar-88 297.2 272.4
Jun-88 443.6 1.137 297.2 1 1.137 0 Jun-88 443.6 404.0
Sep-88 404.9 1.082 436.3 0 0.000 0 Sep-88 404.9 423.2
Dec-88 342.3 0.924 406.5 0 0.000 0 Dec-88 342.3 349.9
Mar-89 303.7 0.857 345.5 1 0.857 0 Mar-89 303.7 321.0
Jun-89 404.3 1.137 305.8 1 1.137 0 Jun-89 404.3 412.6
Sep-89 366.4 1.082 399.4 0 0.000 0 Sep-89 366.4 386.1
Dec-89 301.7 0.924 368.0 0 0.000 0 Dec-89 301.7 311.4
Mar-90 294.6 0.857 305.0 1 0.857 0 Mar-90 294.6 280.3
Jun-90 357.9 1.137 295.1 1 1.137 0 Jun-90 357.9 401.9
Sep-90 307.1 1.082 354.8 0 0.000 0 Sep-90 307.1 341.3
Dec-90 233.0 0.924 309.5 0 0.000 0 Dec-90 233.0 252.5
Mar-91 185.4 0.857 236.8 1 0.857 0 Mar-91 185.4 211.8
Jun-91 300.8 1.137 188.0 1 1.137 0 Jun-91 300.8 294.2
Sep-91 284.8 1.082 295.2 0 0.000 0 Sep-91 284.8 281.5
Dec-91 243.0 0.924 285.3 0 0.000 0 Dec-91 243.0 228.3
Mar-92 262.0 0.857 245.1 1 0.857 0 Mar-92 262.0 220.1
Jun-92 340.6 1.137 261.2 1 1.137 0 Jun-92 340.6 367.8
Sep-92 322.1 1.082 336.6 0 0.000 0 Sep-92 322.1 323.1
Dec-92 274.9 0.924 322.8 0 0.000 0 Dec-92 274.9 265.9
Mar-93 240.6 0.857 277.3 1 0.857 0 Mar-93 240.6 252.4
Jun-93 367.2 1.137 242.4 1 1.137 0 Jun-93 367.2 349.0
Sep-93 355.6 1.082 361.0 0 0.000 0 Sep-93 355.6 347.6
Dec-93 324.3 0.924 355.9 0 0.000 0 Dec-93 324.3 299.1
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Autocorrelation   
 Note that all exponential smoothing equations possess a residual lag 
component; (5) may be written as Ft = αet-1+ Ft-1, where et-1 = (Yt-1 −  Ft-1).   Residual lag 
components help eradicate autocorrelation as do moving seasonal indices and cyclical 
components.  Although there is no guarantee, there is a great likelihood that combined 
forecast models that include an exponential smoothing variable will be 
autocorrelation free. 
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DISCUSSION AND CONCLUDING REMARKS  
 The improved methods of forecasting discussed above produce combined 
forecast models with increased accuracy, greater applicability, and judgmental 
modification capabilities.  Be cognizant that the seasonal index variable Sj provides a 
superior alternative to the traditional time series decomposition forecasting method 
described by (2).  The Sj variable is also superior to (6)—describing seasonal variation 
with dummy variables.  
 
 Parsimonious Models   
 As compared to other combined forecast methods that employ weights, 
unrestricted least squares produce the most accurate in-sample fitted values (Granger 
and Ramanathan 1984).  Hence, the preferred means of improving these combined 
forecast models are to maintain the least squares in-sample accuracy and employ 
judgmental modification variables to obtain greater out-of-sample accuracy.  However, 
the belief that accuracy is increased by combining a large number of forecasts is not 
true for out-of-sample predictions when the model is overspecified.  Overfitting 
inflates forecast error variances and diminishes the accuracy of point estimates 
(Landram, et al 2008b).  This adds credence to Zellner’s (1991) KISS principle of 
“keep it sophisticatedly simple.” In general, parsimonious models yield more accurate 
out-of-sample predictions.  Hansen (2007) maintains that quality of prediction is 
inversely correlated with quality of fit.  Therefore, model selection criteria are 
employed to prevent overfitting.   
 
 Implications 
 Landram et al. (2008a) revealed that the use of time series components within 
least squares equations far exceeds the accuracy obtained by using Solver--a 
spreadsheet linear programming algorithm.  These models are also superior to (a) 
traditional time series decomposition methods and (b) models that describe seasonal 
variation with dummy variables.  Furthermore, they are easier to derive and interpret 
than Box-Jenkins ARIMA models.  Indeed, these models rival all econometric and 
time series models in predictive accuracy.  Given the above attractive attributes, these 
models will quickly be adopted in the classroom and more importantly in the 
workplace. 
 
 
CONCLUSION 
 The intent of this study is to describe how an exponential smoothing variable 
Ft is optimized within a least squares equation.  This improved method of forecasting 
produces combined forecast models that rival all econometric and time series models in 
both in-sample and out-of-sample accuracy.  The likelihood of autocorrelation is also 
diminished when an exponential smoothing variable is included in the model.  
Forecasting is a vital ingredient in all facets of business.  Indeed, all budgeting and 
planning operations begin with assumed accurate forecasts.  Therefore, the improved 
methods described above will make the combination of forecasts increasingly popular 
in the business community. 
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