
Sunk Cost Efficiency with 
Discrete Competitors 

 

37 
 

 
 
 
 
SUNK COST EFFICIENCY WITH DISCRETE 
COMPETITORS 
 
Linus Wilson, University of Louisiana at Lafayette 
 
 
ABSTRACT 

When entrants only differ in their exogenous entry costs, the order in which 
potential firms enter does not affect industry size.  With discrete competitors, entry 
orderings can affect total sunk costs and the identity of entrants.  A necessary and 
sufficient condition is established for sunk entry costs in the industry to be minimized, 
regardless of entry ordering.  JEL Classification:  L11 
 
 
INTRODUCTION 
 This paper explores the role of path dependence, the order in which firms 
enter, in the efficiency of production.  In particular, it explores under what conditions 
lower sunk cost rivals drive away higher sunk cost competitors.  Necessary and 
sufficient conditions for free entry to lead to sunk cost efficiency are developed.  
Nevertheless, there will likely be many circumstances where these conditions are not 
met, and higher sunk cost competitors will drive away more efficient firms. 
 An example may illustrate why sequential entry and different sunk costs are 
important and may lead to inefficiently high entry costs.  Consider a town in Kansas 
that has one general practice physician, and the market could support one more.1  A 
physician from Oregon is recruited to start up what would be a very profitable 
practice.  He has some family and friends in Oregon and prefers the landscape and 
weather in Oregon to that in Kansas.  Nevertheless, he would happily live and work in 
Kansas, and this practice is his best opportunity.  Suppose that there is another doctor 
in Kansas, who is just about to begin her third year of a three year residency prior to 
being able to go into private practice.  Had this medical resident been in a position to 
start a practice in that Kansas town, she would have been happier than the doctor from 
Oregon.  Social welfare would be higher.  Yet, when the doctor from Kansas finishes 
her residency, the doctor from Oregon is settled in, and there is no room for a third 
general practitioner in the town.  Yet, the new physician from Kansas does have a 
good opportunity in Tennessee…  These physicians had different sunk costs of 
moving to the Kansas town, but the Oregon doctor with higher costs moved first and 
prevented the Kansas doctor from entering when she was ready.   
 Different entrepreneurs may have more or less familiarity with setting up a 
storefront or complying with local regulations that pertain to their business.  These 
entry cost advantages do not necessarily lead to variable cost advantages.  Managers 
of rival firms face the same costs of labor, raw materials, and energy as their 
competitors.  Therefore, it seems that heterogeneity in sunk entry costs and nearly 
identical variable costs are common in many business sectors. New businesses form 
in dribs and drabs for the most part.  One entrepreneur or firm decides to bring a 
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business into being on a different day, month, or year than the next competitor.  In 
most there is not a starting line with twenty entrepreneurs racing when the starting 
gun goes off to build the most successful business.  Instead, the more common case is 
that first entrepreneur crosses the starting line on day one, the second crosses the 
starting line six months later, and the third crosses the starting line in one year and 
eight months after the first began her business.  Therefore, a model of entry into an 
industry is best modeled as a sequential game.  This paper attempts to find out under 
what circumstances path dependence—the ordering of entry—can affect the 
efficiency of the industry (the industry’s aggregate sunk costs.)  This paper is more 
general than the standard approach of assuming that sunk and variable costs are 
identical.  Instead, this paper assumes that there is some exogenous heterogeneity in 
the sunk costs of potential entrants.  In this paper, potential competitors play a free 
entry game where the sequence of potential entrants is common knowledge.  Each 
firm is given the opportunity to pay their entry cost or stay out of the industry forever.  
Then the firms compete and collect their profits before investment costs in the last 
stage.   
 With identical variable costs, the exogenous heterogeneity in sunk costs of 
entry does not improve a firm’s ability to compete in the final stage of the game.  
Instead, lower setup costs make entry more attractive (and socially efficient) for some 
firms.  
 We will see that the sequencing of entry decisions does not affect the size of 
the industry.  Yet, the ordering of entry potentially affects the magnitude of entry 
costs incurred.  This study finds the necessary and sufficient condition for fixed entry 
costs to be minimized for a given industry size, regardless of entry ordering.  When 
the necessary and sufficient condition is satisfied, only the lowest sunk cost firms will 
enter.  This is the first and only study to derive sufficient conditions for sunk costs to 
be minimized regardless of entry orderings when there are discrete competitors with 
identical variable cost functions. 
 The author knows of no other model of this type.  The model is primarily 
distinguished by its exogenous heterogeneity in firms’ entry costs.  Studies either 
assume that entry costs are identical, as in Mankiw and Whinston (1986), or that sunk 
costs are endogenous.  Examples of the latter approach are Spence (1977) and Dixit 
(1980) where the first mover chooses its variable costs to deter or accommodate 
further entry. 
 A more recent paper by Roberts (2007) endogenizes the opportunity cost of 
entry.  This distinguishes it from the present approach.  Further, the model of Roberts 
(2007) assumes that entry decisions are taken simultaneously.  In contrast, this paper 
assumes that entry decisions are sequential.  Many of the inefficiencies in Roberts 
(2007) disappear when sequential entry decisions are made in this paper.  The relative 
efficiency of the sequential results here when compared to the results in Roberts’ 
(2007) simultaneous move game is not surprising.  Mixed strategy equilibria found in 
simultaneous move games often lead to inefficiencies even when players wish to 
behave cooperatively.   
 Ghemwhat and Nalebuff (1985) have a model of exit in a declining industry 
where firms must pay rent on their capital to remain in the industry.  Despite this 
obvious difference, there are some analogies between models of entry and exit.  The 
rent on capital in Ghemwhat and Nalebuff’s study can be viewed as a sunk cost of 
entering the industry.  Ghemwhat and Nalebuff find that firms which pay higher costs 
of staying in the industry are the first firms that exit in a declining industry.  This is 
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analogous to this paper’s result that, under some circumstances, regardless of entry 
order, only the firms with the lowest sunk costs will enter the industry.  Yet, there is 
an important difference between this study and Ghemwhat and Nalebuff (1985).  That 
study assumes that higher sunk costs of staying in the industry are associated with 
greater capacity and market share.  Here we assume that higher sunk entry costs are 
exogenous and unrelated to variable costs and thus the firm’s market share.  
Ghemwhat and Nalebuff, as do many other authors discussing entry and exit,2 assume 
for a given unit of capacity (or market share) that sunk costs are identical.  Unlike 
Ghemwhat and Nalebuff’s study, in the present paper, the sunk cost of entry per unit 
of market share is different for every potential entrant. 
 As does this paper, Wilson (2010) assumes that competitors differ in their 
entry costs, but potential entrants have identical variable cost functions.  Yet, it looks 
at entry with a continuum of competitors.  That paper, unlike this one, finds that fixed 
costs are always minimized with a continuum of entrants that make sequential entry 
decisions. 
 The paper proceeds as follows.  In section two, we describe the model.  In 
section three, we show industry size is invariant to entry ordering, and a necessary 
and sufficient condition for all entry orderings to be efficient is proved.  In section 
four, we illustrate the results with three examples.   Finally, section five concludes the 
paper. 
 

FIGURE 1 
SEQUENCE OF EVENTS 

 

 
 
 
MODEL 

Let us begin by describing the game outlined in figure 1 above.  The order 
by which firms of a given rank are allowed to enter is known by all firms in period 

1.−   Further, all previous entry decisions are common knowledge as they occur in 
period 0.  In period 1, entrants compete without regard to their exogenous sunk costs.  
In period 1, all entrants receive an identical payoff before entry costs, which is only a 
function of the Ne firms that enter.  Let us define π(Ne) as the payoff before entry 
costs for a unit-sized firm.  
 A firm that enters pays a sunk entry cost, Ki, which depends on the firm’s 
rank i, where i F∈ =  {1, 2, 3,…, n-1, n}.3  The set of firms is a proper subset of the 
set of natural numbers. The number of elements of this set is n(F) = n, where n is 
contained in the set of natural numbers. The investment costs, Κi, are increasing in the 
firm’s index number, i.   That is, K1 < K2 < K3 <…< Kn.  Let us assume that per firm 

Ordering of potential 
entrants is determined 
and becomes common 
knowledge. 

•Firms sequentially 
choose to enter. 

•Entrants pay the 
sunk costs of entry. 

Period -1 Period 0 Period 1 

Ne entrants each 
earn a payoff of 
π(Ne). 
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payoff, π(Ne), declines in the number of entrants.  That is, π(1) > π(2) > … > π(n – 1) 
> π(n).4    
 We will assume that all firms that expect to make non-negative profits will 
enter.  To ensure that it is subgame perfect Nash equilibrium (SPE) that at least one 
firm enters, let us assume that it is profitable for the lowest cost firm to always enter.   
   
 

1(1) 0Kπ − ≥  (1) 
 
 
Further, let us assume that if all firms enter, the highest cost firm in the set F will find 
entry unprofitable. 
 

( ) 0.nn Kπ − <  (2) 
 
 Suppose that the ordering of entry is a permutation of the set F.  The entry 
set, E, consists of n(E) ≡ Ne firms.  If there is a potential entrant of rank i, it must be 
the case that .i F∈   Further, if the firm of rank i enters, .i E∈   Since both Ne and n 
are integers, the set E can consist of any ordering of the firms in set F such that the 

.E F⊆   There is an upper bound of  
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possible permutations of entry orderings.  Nevertheless, there will only be at most 
C(n, Ne) different combinations of equilibrium entry sets for any random ordering of 
entry.   
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Yet, there will only be one (unordered) entry set that is part of the unique 

subgame perfect Nash equilibrium (SPE) for any entry sequence.  
 
  

ANALYSIS 
In this section we will prove two propositions regarding free entry and sunk 

cost efficiency when firms are of identical but discrete size.  First, we demonstrate 
that the industry size does not depend on the entry ordering.  Then, we will prove the 
necessary and sufficient conditions to achieve sunk cost efficiency in the industry.  
 The implication of the inequalities in (1) and (2) is that some firms enter and 
some firms stay out of the industry.  Let us define the free entry number of firms by 
the following set of conditions: 
 

1
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e
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Proposition 1 
The ordering of potential firms will not affect the number of entrants. 
 
 From equation (5), we know that all firms with index numbers 0 < i < Ne will 
enter if no one else does.  Further, these low index number firms, i < Ne, might even 
enter if the industry has greater than Ne firms.  To get more than Ne entrants, it is 
necessary that the firm of rank Ne + 1 or some higher ranked firm enters also.  The 
free entry condition in (5) precludes this possibility because π(Ne + 1) < 

1
.eN

K
+

  If the 

firm with the index number Ne + 1 will not enter an industry which will have Ne + 1 
entrants, then no other higher index number firm with an index number N > Ne + 1 
will enter under such circumstances. Q.E.D. 
 It is well known that consumer surplus increases with industry output.  The 
ordering of entry does not affect industry size with identical competitors.  If aggregate 
industry output depends on the number of identical competitors, entry orderings 
cannot affect consumer surplus.  Yet, we will see that the ordering of entry can affect 
industry profits and thus overall welfare when these otherwise identical rivals differ in 
their sunk costs. 
 For any given equilibrium industry size, Ne, efficiency minimizes the entry 
costs incurred to reach that industry size.  Therefore, efficiency under free entry 
depends on the identity of who enters—not just on the number of firms entering, Ne.   
(The latter problem was the only concern of Mankiw and Whinston (1986)). Total 
sunk cost of entry are .i

i E
K

∀ ∈
∑   Since sunk costs are increasing in firms’ index 

numbers, sunk cost efficiency means that only the Ne firms with the lowest index 
numbers, i < Ne, enter for a given industry size, Ne.  
  
Proposition 2 
The necessary and sufficient conditions for all possible entry orderings to minimize 
entry costs for any equilibrium size, Ne, is ej N∀ >  either 
 A) ( ),e

jK Nπ>  or 

B) ,      , ( 1)e e
ii N which could enter after j N Kπ∀ ≤ + ≥  

  
 It is not hard to see that if we replaced any firm with rank i < Ne with a firm 
of rank j > Ne, the total entry costs would unambiguously rise because entry costs are 
strictly increasing in a firm’s rank.   We will begin by proving the sufficiency of A 
and B.  Sufficient conditions imply that a statement is true.   
 The proof for part A of proposition 2 is as follows. jK > π(Ne) implies that 
all firms of rank j > Ne will stay out, leaving only the potential entrants of rank i < Ne.  
We know from the first inequality that all these firms will enter if that means that the 
size of the industry is equal to or less than Ne.  This must be the case, and all firms of 
index numbers of i, where i < Ne, will enter. Q.E.D. 

Now, we can consider part B in proposition 2.  Suppose that π(Ne) – Kj > 0 
for some firms of rank j > Ne.  If all the i ranked firms enter before a firm j > Ne, then 
the j-th firm will not enter because π(Ne + 1) – Kj < 0, according to the second 
inequality in the free entry conditions in equation (5).   Yet, if the a firm of rank i 
enters after a firm or rank j, then the j-th firm will only find entry profitable if it can 
deter firm i from entering.  Consider all the firms of rank i < Ne that firm ranked j* = 
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(Ne + 1) could discourage from entering the industry.  Firm Ne + 1 will have the best 
chance of deterring the Ne-th firm from entry, because lower ranked firms have lower 
costs of entry.  Yet, if firm Ne + 1 enters before firm Ne, it cannot deter firm Ne from 
entering by its entry alone if firm Ne is profitable in an industry of Ne + 1 firms.  That 
is, if π(Ne + 1) – eN

K  > 0, the entry of the j*-th firm will not discourage any firm of 

rank i from entering.  Therefore, the (Ne + 1)-th firm will stay out if eN
K < π(Ne + 1), 

regardless of the entry permutation.  Since lower ranked firms have lower entry costs, 
we can be sure that all firms of rank i will enter if firm j enters.  That is, Ki < π(Ne + 
1) for all i < Ne.  Further, all higher j firms, of rank higher than j* = Ne + 1, will also 
stay out, regardless of the entry ordering because the π(Ne + 1) <

1 2
...e eN N

K K
+ +

< <  
Q.E.D. 

A necessary condition must be satisfied for a proposition to be true.  Because 
there are no other circumstances than A or B in proposition 2 in which only the lowest 
cost firms enter under free entry regardless of entry ordering, then minimized sunk 
costs regardless of entry ordering implies that either A or B is true.  Q.E.D. 

If the necessary and sufficient conditions for proposition 2 are met, it is a 
unique subgame perfect Nash equilibrium (SPE) that all firms of rank i < Ne will enter 
and all firms of rank j > Ne will stay out regardless of entry ordering. 

 
 

THREE EXAMPLES 
 Here we will explore three numerical examples.  The Nash equilibrium 
outputs, producer surplus, consumer surplus and welfare for a given number of 
entrants are derived in the appendix.  Firms are assumed to play a simultaneous 
Cournot game in period 1.  

For the examples in this section, the inverse demand intercept, a, inverse 
demand slope, b, and the marginal cost, c, parameters for both examples are 

 
10
1
0.

a
b
c

=
=
=

 (6) 

 
 Under the parameters suggested in equation (6) above and the formula for 
the per firm payoff before entry costs derived in the appendix equation (12), we know 
that per firm producer surplus as a function of the number of entrants will be 
 

(1) 25
1(2) 11
9

(3) 6.25.

π

π

π

=

=

=

 (7) 

 
 Inserting the parameter values in (6) into the equation for equilibrium 
consumer surplus, which is derived in equation (15) in the appendix, consumer 
surplus is the following, depending on the number of entrants: 
 



Sunk Cost Efficiency with 
Discrete Competitors 

 

43 
 

(1) 12.5
2(2) 22
9

(3) 28.125

CS

CS

CS

=

=

=

 (8) 

 
Example 1 
  

1K  = 7, 2K  = 8, and 3K = 9. 
 
 Here free entry dictates that only two firms enter.  Ne = 2 as defined by 
equation (5).  That is, 2K  = 8 < π(2) =  11.1,  and 3K  = 9 > π(3) = 6.25.  Yet, the most 
efficient entry set is not the only possible SPE when all entry orderings are equally 
likely.  We know this because 3K  = 9 < π(2) = 11.1,  and π(3) = 6.25 < 2K  = 8.  
Therefore, neither part of proposition 2 is satisfied.  Indeed, there is no ordering 
where the 3rd ranked firm is given the first or second opportunity to enter where the 
last firm, of either rank 1 or 2, will credibly enter.  That is, both 1K  = 7 > π(3) = 6.25 
and 2K  = 8 > π(3) = 6.25.  Therefore, if entry sequences are independent and 
identically distributed (i.i.d.) one-third of the time the first-best free entry set, E1 = {1, 
2}, will enter, generating social welfare of 29.4;  one-third of the time the second-best 
set of firms will enter, E3 = {1, 3}, generating social welfare of 28.4;  and one-third of 
the time the worst set of firms will enter, E2 = {2, 3}, generating social welfare of 
27.4.   Therefore, if entry orderings are i.i.d., then expected welfare is 28.4 , which is 
lower than 29.4, the social welfare if the lowest ranked firms entered first.5    
 The example of the physician from Oregon, who prevented the entry of the 
lower sunk cost physician from Kansas, is consistent with example 1’s less efficient 
entry sets, where at least one higher sunk cost entrant blocks a lower sunk cost 
entrant. 
 
Example 2 

 
1K  = 5, 2K = 6, and 3K = 10. 

 
 Here, too, free entry dictates that only two firms enter.  That is, 2K = 6 < 

π(2) = 11.1,  and 3K  = 10 > π(3) = 6.25.  The 3rd ranked firm with fixed costs 3K  = 10 
would want to enter if there would only be two entrants, given that it entered.  Yet, it 
would lose money if three firms entered.  The 3rd ranked firm cannot deter entry by 
the lower ranked firms.  With these fixed costs for potential entrants, only the most 
efficient free entry equilibrium is possible.  That is, the entry set E1 = {1, 2} is the 
unique SPE, regardless of entry ordering.  We know this is the case because the 
sufficient condition from the part B of proposition 2 is met.  Namely, 3K  = 10 < π(2) 

=11.1.  Yet the 3rd firm cannot deter entry of either the second or first firm because 
π(3) = 6.25 > 2K = 6 > 1K = 5.  Therefore, there is no entry permutation in which the 
lower ranked firms will not enter if the third ranked firm entered.  Furthermore, the 3rd 
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firm will never enter in equilibrium regardless of entry ordering.  In this case, social 
welfare is 33.4 under free entry or when entry is regulated by a social planner.   
 Suppose that we change the physician example slightly to fit the parameters 
of example 2.  Suppose that the medical resident from Kansas would establish a third 
practice in the town upon completion of her residency, regardless of whether or not 
the doctor from Oregon establishes a practice.  Thus, if the physician from Oregon 
contemplated that a lower sunk cost rival would enter after he did, then he would look 
for another town in which to set up his practice.  That is because he would find the 
Kansas practice unprofitable with three physicians in town.  Thus, sunk cost 
efficiency sometimes depends on the willingness of lower cost rivals to enter if high 
cost rivals enter first as proposition 2B argues.  The potential of higher levels of 
competition scares away the inefficient entrant. 
 
Example 3 

 
1K  = 20, 2K = 26, and 3K = 27. 

 
 In this example only one firm can profitably enter because both 1K  = 20 < 

π(1) = 25 and K2 = 26 > π(2) = 111
9

.   Indeed, only the lowest sunk cost firm can 

profitably enter because K2 = 26 > π(1) = 25 satisfying proposition 2A.  Thus, this 
distribution of sunk costs leads to sunk cost efficiency regardless of entry ordering. 
 
Discussion of the Examples 

In each example, the set of potential entrants is F = {1, 2, 3}.  Therefore, we 
have three firms, n(F) = n = 3, that are contemplating entry.  In the fist two examples, 
we find that two firms, Ne = 2, enter the industry in equilibrium.  Nevertheless, 
welfare would always be weakly higher under free entry if the entry order was such 
that the lowest fixed cost firms moved first. 

In the first example, there are C(n, Ne) = C(3, 2) = 3 potential subgame 
perfect Nash equilibrium (SPE) entry combinations— E1 ≡  {1, 2}, E2 ≡ {2, 3},  and 
E3 ≡ {1, 3}.  In contrast, in the second example, the 3rd ranked firm cannot deter the 
entry of the 2nd ranked firm.  Therefore, as in proposition 2, the most efficient free 
entry equilibrium combination—E1 ≡  {1, 2}—is the SPE regardless of entry 
ordering.   

In example 3, proposition 2A is illustrated.  If only the lowest cost firms will 
be profitable in an industry of size Ne, firm 1 in this example, sunk cost efficiency is 
achieved regardless of entry ordering. 
 All these examples illustrate the concept that ordering does not affect the 
number of entrants when competitors have identical payoffs after entry, π(Ne) , 
proposition 1.  Nevertheless, ordering does potentially affect welfare when firms are 
discrete as higher fixed cost competitors may enter and preclude lower fixed cost 
firms from entering.  The necessary and sufficient conditions for entry ordering 
irrelevance in proposition 2 are illustrated by these examples as well.   
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CONCLUSION 
This paper has considered an entry game in which firms have identical 

payoffs upon entry but differ in their sunk entry costs.  In this game, both the 
exogenously given cost functions and entry orderings are common knowledge.  Under 
these conditions, entry ordering cannot affect the size of the industry or the number of 
competitors.  Yet, entry orderings can sometimes affect the sunk costs in an industry.  
With discrete competitors, higher fixed cost entrants can potentially block lower fixed 
cost potential competitors from entering.  A necessary and sufficient condition for all 
entry orderings to minimize fixed costs is derived. 

 
 

APPENDIX 
DERIVING THE LINEAR COURNOT MODEL 

 Here we derive the linear Cournot model which is used to analyze the 
examples in section 0.  q(Ne) is per firm output, which is a function of the number of 
entrants, Ne.  Total industry output is N eq(Ne) .Q≡  Inverse demand is defined as 
price as a function of industry output, P(Q).  Suppose that all firms are identical 
Cournot competitors who face a linear inverse demand curve P(Q) = a – bQ.   
Further, all competitors have identical cost functions c(q) = c q(Ne), where c > 0 is the 
marginal cost parameter.  Firms are assumed to play a simultaneous move Cournot 
game in period 1.   

The Nash equilibrium per firm output for an industry with Ne identical 
competitors is  

 
 

( ) .
( 1)

e
e

a cq N
b N

−
=

+
 (9) 

 
Total industry output in equilibrium is  
 

( ) ( ) .
1

e
e e e

e

N a cQ N N q N
bN
−

≡ =
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 (10) 

 
 The equilibrium price is  
 

( ) .
1

e
e

e

a N cP N
N
+

=
+

 (11) 

 
 Per firm producer surplus for all entrants is  
 

2 1( ) .
1

e
e

a cN
bN

π −⎛ ⎞= ⎜ ⎟+⎝ ⎠
 (12) 

 
 If the i-th firm enters, its profits after sunk costs are  
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2 1( ) .
1

e
i ie

a cN K K
bN

π −⎛ ⎞− = −⎜ ⎟+⎝ ⎠
 (13) 

 
 Total profits for the industry are industry producer surplus, or payoff before 
sunk costs, ( ) ( ),e e eN N Nπ∏ ≡  less total investment costs, .i

i E
K

∀ ∈
∑   That is, industry 

profits in equation (14) below are obtained by summing the per-firm profits in 
equation (13) for all firms in the entry set, E: 
 

2
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1

e
e e e

i i ie
i E i E i E

a c NN K N N K K
bN

π
∀ ∈ ∀ ∈ ∀ ∈
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∑ ∑ ∑       (14) 

 
Total consumer surplus, CS(Ne), generated by this industry is 
 

22 ( ) 1( ) .
2 21

e
e

e

bQ N a cCS N
bN

⎛ ⎞−
= = ⎜ ⎟+⎝ ⎠

                                                (15) 

  
Therefore total welfare, W(Ne; E), which is a function of both the size of the 

industry, Ne, and the entry set, E, is obtained by adding equations (14) and (15).  It is 
the following:  

 

2
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ENDNOTES 
1. Physicians have been seen as a good example of very simple firms in empirical 

studies of entry.  Bresnahan and Reiss (1991), for example, analyzed entry 
into 202 geographically isolated markets, studying the competition of 
physicians, dentists, druggists, plumbers, and tire dealers. 

2. The examples are too numerous to do justice to because identical sunk costs are a 
standard simplifying assumption.  A sampling of studies that present 
theoretic models of entry with identical sunk costs are Frank (1965), Mankiw 
and Whinston (1986), and Sutton (1991).   

3. Because entry costs are sunk, this paper precludes the possibility of the hit-and-
run equilibria of contestable markets described by Baumol (1982). 

4. An example of a game with these properties would be a Cournot game where all 
entrants had identical variable cost functions.  This example is pursued in 
section 4 and is derived in the appendix.   

5. Mankiw and Whinston (1986) argue that sometimes free entry leads to excessive 
entry.  This is the case here.  If entry was regulated by a social planner in this 
example, then only the 1st ranked firm would be allowed to enter and social 
welfare would be 30.5.  This is higher than the best free entry equilibrium in 
terms of welfare, which generated welfare of 29.4. 
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