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ABSTRACT

This research reassesses the impact of environmental regulations on economic 

performances in the U.S. manufacturing sector from 1973 to 2005.  This paper 

uses information on NAICS-based 440 manufacturing industries from the NBER 

Manufacturing Productivity database and EPA’s PACE survey. Performing several 

econometric techniques and focusing on output and productivity, negative impacts 

of EPA regulations on both of them have been noticed. However, regulations cannot 

be blamed alone for output and productivity slow down. Dirty industries could avoid 

some output and productivity losses by spending more on pollution abatement. 

Evidence proves the presence of a “measurement effect” and a “real effect.” JEL 

Classification: D24, L60, Q58

INTRODUCTION     

The goal of this research is to reassess the impact of environmental regulations 

on economic performances in the U.S. manufacturing sector.  Outcomes of this 

analysis will help in understanding the dynamics of the regulation-productivity 

relationship in the long run. The analysis is done from 1973 to 2005 using information 

on North American Industry Classification System (NAICS)-based 440 manufacturing 
industries from the NBER Manufacturing Productivity (MP) database, and from 
the Environmental Protection Agency’s (EPA’s) Pollution Abatement Costs and 
Expenditures (PACE) survey. The EPA discontinued the PACE survey after 2005 due 
to their resource constraint. Nevertheless, the analysis over several years might help 

identify whether the main cost is one of adjusting to regulations in the first place, or if 
there are continuing costs—assuming that someone is willing to accept industry-level 
regressions as evidence. This essay involves performing the ordinary least squares 

(OLS) at levels, fixed-effects (FE), OLS-first differences (FD), instrumental variables 
(IV) in FD, quantiles, OLS-first and second lagged, difference and system GMM, 
and Chow procedures focusing on output and “measured” productivity. The research 

results indicate strong adverse effect of EPA regulations and industry status (whether 
an industry is considered as a “dirty” one) on industries’ outputs and productivities.  
This adversity becomes somewhat less intense if an average dirty industry incurs more 

pollution abatement costs. Industries actually incur additional costs to comply. In fact, 

regulations alone cannot be blamed for productivity or output slow down.   
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These results in no way imply that regulation is a bad idea, but there are people 

(even if they are not economists) who hold the ‘null hypothesis’ that regulation is 
costless, which the paper is testing.  In fact, the actual benefits from regulations 
might be bigger than the costs (Porter, 1995). For example, benefits from air pollution 
reduction could be many billions of dollars due to lives saved. However, this issue is 

out of the scope of this study. This is the first industry-level study covering information 
from 1973 to 2005 considering data from all PACE surveys to date. 

The research unfolds as follows—next the literature and motivations have been 
reviewed briefly.  The former section is followed by a description of empirical mod-

els, databases used, and econometric specifications. Then the estimation results are 
explored. Last, the research is summarized and concluded.

LITERATURE REVIEW

The whole debate in the literature about the relationship between industrial pro-

ductivity and environmental regulations has started since the1970’s, the first years to 
experience the co-existence of a slowdown in productivity growth in the U.S. econ-

omy and the introduction of public environmental regulations in an unprecedented 

massive scale.  Both the estimation technique and the type of data used to examine the 

relationship have evolved over time. As a result, different researchers have come up 

with different findings that vary from a negative impact to a positive one. For example, 
early researches like Norsworthy et al. (1979) and Portney (1981) used the “growth 
accounting” method and found an insubstantial regulation-productivity relationship. 

Gradually econometric analysis gets preference over the growth accounting procedure 

in later investigations. The logical appeal of using a combination of multiple databases 

containing more detailed information on a set of public policies and other factors like 

production inputs, through which regulation might affect productivity indirectly, re-

places the use of single database like abatement cost survey containing only pollution-

regulation related information. Christainsen and Haveman (1981), Gollop and Roberts 
(1983), Barbera and McConnell (1986), and Gray (1987) are examples of such studies, 
which revealed an unwanted adverse impact of regulations on productivity. The use 

of industry-level data becomes less attractive with the increasing accessibility to firm- 
and plant-level databases. For example, Gray and Shadbegian (1993) is the first study 
to find the negative impact of regulation on productivity at establishment-level. Sev-

eral other studies (Gray & Shadbegian, 1995, 2003; Berman & Bui, 2001; Greenstone, 
2002) use plant-level data for same purpose.

Unfortunately, less is known about the impact on output and productivity of 

regulation in the 1980s, 1990s, and 2000s at the industry level.  The lack of consensus, 

along with the availability of a large set of data, motivates this long-run industry-level 

study to look into the dynamics of the regulation-performance relationship. 

 

MODEL, DATA DESCRIPTION, AND ECONOMETRIC SPECIFICATION

A four-input (labor, capital, investment, and materials) Cobb-Douglas production 
function is assumed in equation: 
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where Y, T, L, K, I, and M stand for output, technology, labor, capital, investment, 

and materials, respectively. α, β, γ, and δ are the factor weights.  OUTPUT, log of 

value of industry shipments after deflating by the industry price of shipments; LABOR, 

log of number of production workers hours; CAPITAL, log of real capital stock; 

INVESTMENT, log of new capital spending after deflating by an industry-specific 
price index; MATERIAL, log of cost of materials after deflating by an industry-specific 
price index are taken from the NBER Manufacturing Productivity (MP) database, 
which covers 473 separate NAICS-based industries from 1958 to 2009. DIRTY, a 

dummy variable indicating whether an industry belongs to SIC 26, 28, 29, 30, 32, 33, 

or 34 is created. Besides these four inputs, OUTPUT is regressed on DIRTY and year 

dummies in order to obtain the factor weights to calculate TFP, the difference between 

OUTPUT and weighted factors (Gray & Shadbegian, 1995, p. 9).     
However, to incorporate the fact that some inputs are used to be in compliance 

with the environmental regulation, equation can be rewritten as equation: 

                                

where the subscript ‘ER’ stands for inputs used to comply with environmental 

regulation, and ε is the share of compliance costs. Industry’s annual pollution-
abatement operating cost (PAOC) is chosen to control for environmental regulation 
(Gray & Shadbegian, 1995, p. 7). The data comes from the Environmental Protection 
Agency’s (EPA’s) Pollution Abatement Costs and Expenditures (PACE) survey. The 
compliance costs are divided by the value of shipments for the respective industry. 

Starting in 1973, the annual survey was discontinued after 1994. Since then the Bureau 

of Census collected this data only twice, once in 1999 and then again in 2005. So after 

the necessary adjustments to 1999 and 2005 PAOC, values for the remaining years 

with missing information on PAOC are interpolated. The final dataset contains 440 
NAICS-based industries with continuous data from 1973 to 2005. 

A couple of econometric issues arise in estimating the impact on OUTPUT and 

TFP of the regulation—serial correlation and endogeneity issues.
The former issue could arise if industry-specific unobserved factors bias the 

relation between explained and explanatories.  To tackle this issue, fixed-effects (FE) 
and OLS-first differenced (FD) estimation procedures are used. The instrumental 
variable (IV) approach in the FD models is also applied, should sequential exogeneity 
be failing.    

A more salient issue, which a researcher has to face while estimating the regulation-

performance relationship, is the latter issue: higher abatement costs might lead to 

lower output and productivity and again, lower output and productivity might lead 

to higher abatement cost.  Two methods have been tried to overcome the endogeneity 

issue: lagging the explanatory variables and considering the GMM models proposed 

by Arellano and Bond (1991). Both of these methods arguably provide somewhat of a 
solution for the endogeneity concern.
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Besides first-lagged instruments, second-lagged instruments are used (Mileva, 
2007, p. 6).  Endogeneity may persist even after lagging the explanatory variables if 
there is a serial correlation in PAOC. Again, a deep lag might result in little correlation 

between actual value of a variable and its instrument.   

All GMM models in this paper instrument the current values of the explanatory 

variables with their all-possible lagged values in order to enhance the efficiency of 
the specifications (Doornik et al., 2002, p. 6).  Both difference and system GMM 
are performed because, should the lagged explanatory variables be poor instruments 

for the first-differenced explanatory variables, system GMM is a better fit (Mileva, 
2007, p. 7). The GMM model remains susceptible to endogeneity in cases where the 
instruments are not completely exogenous and/or they perform weakly. It is needless to 
mention that the complexity of the GMM model can easily generate invalid estimates, 

should researcher be unaware of its purpose, design, and limitations (Roodman, 2009, 
p. 2).  

In addition to the above-mentioned econometric tools, the Chow test is carried 

out every time an interaction variable is used.

 

RESULTS

Table 1 presents the descriptive statistics of the key variables used in this analysis.  

An average industry’s pollution abatement spending is a very small percentage of its 

output. Almost 40 percent of the industries in this sample belong to “dirty” industries. 

Although an average dirty industry bears more abatement costs than an average other 

industry, the costs tend not to be substantially different.    

The basic regression results are presented in Table 2.  Factor weights are 

obtained by regressing OUTPUT on LABOR, CAPITAL, INVESTMENT, MATERIAL, 

DIRTY, and year dummies in Model 2A to calculate TFP. Industry characteristics 

yield expected and strong results. High R2 (.945) signifies well-explained variations 
in OUTPUT across industries and over time. The results are similar across the OLS-

level models 2A-2D: high pollution abatement costs tend to reduce both OUTPUT and 

TFP significantly. A percentage point increase in PAOC reduces both the estimators 

by almost 5 percentage points. Although the interactive explanatory shows a 3.5 

percentage point significant increase in both output and total factor productivity, the 
net effect of abatement cost is still greater than a 1 percentage point reduction. This 

suggests the presence of the “real effect” (Gray, 1987, p. 999). Model 2B and 2D 
produce little or no change at all to R2s even after including PAOC and DIRTY*PAOC 

variables. This indicates other factors’ responsibility in explaining the rest of the 

variations in output and productivity.  

Now the regulation-OUTPUT and regulation-TFP relationships are presented 

quantile wise in Table 3. The former relationship is always negative and statistically 

significant, the second quantile being the strongest one. The latter relationship is 
always negative like the former relationship, but only the third quantile includes a 

statistically significant coefficient. 
FE and FD models are used in Table 4 to control for industry-specific unobserved 

differences.  PAOC produces smaller and statistically weak impacts than those shown 

in Table 2. In Model 4B, PAOC yields a less than 1 coefficient that indicates an absence 
of “real effect.” In addition, FE and FD results look very different. This suggests the 
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failure of sequential exogeneity. So PAOC and DIRTY*PAOC are instrumented by 

their second lags, and the results are presented in Model 4C and 4F. According to both 

specifications, the estimators get weak positive boosts from abatement spending like 
FE models do. This might suggest the presence of either “measurement error” or the 

benefits of regulations (Gray & Shadbegian, 1995, p. 16).           
The endogeneity of PAOC might plague the results both at levels and at first 

differences.  Thus, the OLS-lagged approach is resorted in Table 5. In Model 5A (5C) 
and 5B (5D), present level of OUTPUT (TFP) is regressed on first- and second-lagged 
explanatory variables, respectively. In all models, results look very similar to those 

of Table 2. PAOC yields substantially bigger adverse impacts on the estimators: 7.2 

and 5.3 percentage points in Model 5B and 5C being the highest and lowest ones, 

respectively.       

In addition, the impacts of regulation on OUTPUT and TFP are estimated using 

GMM.  The difference and system GMM results are reported in 6A, 6C and 6B, 6D, 

respectively. Interesting enough, these two methods produce very different results. As 

expected from Model 4C and 4F, Model 6A and 6C are also unable to produce any 

noticeable result. In contrast, both Model 6B and 6D produce expected and statistically 

significant results: a percentage point increase in PAOC reduces OUTPUT and TFP by 

almost 4.4 and 2.8 percentage points, respectively. System GMM has also increased 

the overall efficiency with higher p-values for both AR (1) and AR (2), and Hansen J 

statistics.          

In this analysis, PAOC, DIRTY, and DIRTY*PAOC are main of focus. Throughout 

the estimation process, PAOC yields the most consistent, expected, and statistically 

significant coefficients. DIRTY and DIRTY*PAOC yield strong expected results across 

OLS models, but both of them become inconsistent in GMM models.  

SUMMARY AND CONCLUSION

Five main conclusions of this study are—an industry with higher pollution 
abatement spending experiences significantly lower output and productivity levels; 
an average dirty industry experiences significant reduction in both output and 
productivity compared to an average other industry; an average dirty industry with 

higher abatement costs, experiences less severe negative impact from environmental 

regulations; both measurement and real effects are present (unlike Gray, 1987, p. 1003); 
and environmental regulations studied cannot alone be blamed for the slowdown in 

output and productivity (like Gray, 1987, p. 1003).
In general, OLS models at levels suggest a 5-percentage point reduction in 

output and productivity for each percentage point increase in abatement spending. 

OLS-first differenced models perform better than fixed-effects and IV specifications. 
However, the abatement costs coefficient is statistically significant only once, showing 
a significant reduction by almost 0.9 percentage points in output. According to the 
OLS-lagged models, every percentage point increase in abatement costs reduces the 

output by 6-7 percentage points and productivity by 5-6 percentage points. System 

GMM models conform to OLS and OLS-lagged models and confirm a 3-4 percentage 
point negative economic consequence for each percentage point in extra pollution 

abatement costs.

Generally speaking, switching from clean to dirty status costs an average 
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industry a 4-7 percentage point reduction in output and productivity. Industry status 

and the abatement costs variable are interacted. The interactive variable indicates that 

in the end an average dirty industry could be benefited economically by incurring 
higher abatement costs. However, these two different groups of industries do not seem 

to incur substantially different abatement costs (Table 1). 
Abatement costs coefficients always remain strongly greater than 1 in 

magnitude. This confirms that the industries incur additional costs to comply with the 
environmental regulation.   

It is evident from the R2s that variations in firm characteristics explain most of 
the variations in output. Even after including regulatory and the interactive variables, 

a 5-6 percent of output variation is left to be explained by other factors.
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TABLE 1. SUMMARY STATISTICS (FULL SAMPLE, 440 INDUSTRIES 

FROM 1973 TO 2005)

Variable
Mean

(s.d.)
Description

Dependent variables

OUTPUT 8.1769    

(1.093)
Log of real output

TFP 1.7158    

(.261)
Total factor productivity

Regulatory variable

PAOC .0042    

(.008)
Pollution abatement operating costs, 

divided by value of industry shipments

Industry characteristics

LABOR 3.4188    

(.993)
Log of production hours

CAPITAL 7.3595

(1.142)
Log of real capital stock

INVESTMENT 4.6282    

(1.272)
Log of real new capital spending

MATERIAL 7.4471    

(1.148)
Log of real material

DIRTY .3796    

(.485)
Dummy variable = 1 if an industry is in 

SIC 26, 28, 29, 30, 32, 33 or 34

PAOC
DIRTY = 0 DIRTY = 1

.0022    

(.005)
.0076    

(.011)
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TABLE 2. INITIAL OLS REGRESSION RESULTS (DEPENDENT 

VARIABLE = OUTPUT OR TFP)

Model

A B C D

Level

OUTPUT TFP

PAOC -4.9946***   

(.8106)
-4.7569***  

(.7520)

DIRTY*PAOC 3.4990***   

(.8268)
3.6254***   

(.7924)

DIRTY -.0545***   

(.0050)
-.0583***   

(.0054)
-.0545***   

(.0040)
-.0561***    

(.0048)

LABOR .1577***   

(.0035)
.1507***   

(.0038)

CAPITAL .0960***   

(.0060)
.1057***   

(.0064)

INVESTMENT .0827***   

(.0059)
.0834***   

(.0059)

MATERIAL .6490***    

(.0069)
.6464***  

(.0069)
R2 .945 .945 .031 .036

No. of obs. 14520 14520 14520 14520

* p<0.05, ** p<0.01, *** p<0.001

Note: Robust standard errors are in the parentheses.

           All models include a constant term and year dummies.

           Chow tests, on DIRTY*PAOC, reject the null strongly in all cases.  
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TABLE 3. PERFORMANCE BY QUANTILES (DEPENDENT VARIABLE = 

OUTPUT OR TFP)

Model
Q25 Q50 Q75

OUTPUT TFP OUTPUT TFP OUTPUT TFP

PAOC -5.1550***  

(1.337)
-6.7426   

(72.006)
-8.0025***   

(1.122)
-7.1497   

(20.816)
-6.6410***   

(1.011)
-5.5552***   

(1.400)

DIRTY*PAOC 4.8430***   

(1.318)
5.0941   

(71.975)
7.3923***   

(.964)
6.7662    

(21.020)
5.1078***   

(.963)
5.5724***   

(1.491)

DIRTY -.0362***   

(.006)
-.0439   

(.164)
-.0975***   

(.004)
-.0912   

(.048)
-.1085***   

(.005)
-.1033***   

(.007)

LABOR .1813***   

(.003)
.1616***   

(.003)
.1413***   

(.002)

CAPITAL .0756***   

(.006)
.1037***   

(.004)
.1138***   

(.007)

INVESTMENT .0763***   

(.006)
.1085***   

(.004)
.1461***   

(.006)

MATERIAL .6532***   

(.004)
.6082***   

(.004)
.5776***   

(.004)
Pseudo R2 .804 .045 .806 .033 .805 .030

No. of obs. 14520 14520 14520 14520 14520 14520

* p<0.05, ** p<0.01, *** p<0.001

Note: Standard errors are in the parentheses.

           All models include a constant term and year dummies in each quantile.

           Chow tests, on DIRTY*PAOC, always reject the null strongly.
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TABLE 4. FIXED EFFECTS, FIRST DIFFERENCES, IV REGRESSION 

RESULTS (DEPENDENT VARIABLE = OUTPUT OR TFP)

Model

A B C D E F

FE 1st diff. IV FE 1st diff. IV

OUTPUT TFP

PAOC 1.4205   

(1.158)
-.8816*   

(.4722)
.2707   

(.166)
1.8030   

(1.136)
-.3877   

(.5035)
.2916   

(.178)

DIRTY*PAOC -1.4199    

(2.145)
.4641   

(.5830)
-.2578    

(.177)
-2.0671   

(1.690)
.3058   

(.6269)
-.2287   

(.196)

LABOR .0932   

(.097)
.2701***    

(.0148)
.2631***   

(.015)

CAPITAL .1497*   

(.064)
.1177***   

(.0212)
.1212***   

(.022)

INVESTMENT .0172   

(.011)
.0136***   

(.0026)
.0141***   

(.003)

MATERIAL .7895***  

(.105)
.5813***   

(.0116)
.5903***   

(.012)

R2 .940 .735 .744 .019 .044 .045

No. of obs. 14520 14080 13640 14520 14080 13640

* p<0.05, ** p<0.01, *** p<0.001

Note: Robust standard errors are in the parentheses.

           All models include a constant term and year dummies.

           Chow tests, on DIRTY*PAOC, do not reject the null at all.
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TABLE 5. OLS REGRESSION RESULTS WITH LAGGED EXPLANATORY 

VARIABLE (DEPENDENT VARIABLE = OUTPUT OR TFP)

Model

A B C D

1st lag 2nd lag 1st lag 2nd lag

OUTPUT TFP

PAOC -5.9627***   

(1.031)
-7.2093***    

(1.310)
-5.3153***   

(.831)
-5.9341***   

(.906)

DIRTY*PAOC 3.7711***  (1.041) 4.3133***    (1.309) 4.2511***   

(.866)
4.8892***   

(.935)

DIRTY -.0627***   

(.006)
-.0686***   

(.007)
-.0590***   

(.005)
-.0607***   

(.005)

LABOR .1484***   

(.004)
.1462***   

(.004)

CAPITAL .0969***   

(.007)
.0897***   

(.008)

INVESTMENT .1047***    

(.006)
.1261***   

(.007)

MATERIAL .6357***   

(.007)
.6232***   

(.007)

R2 .940 .934 .038 .038

No. of obs. 14080 13640 14080 13640

* p<0.05, ** p<0.01, *** p<0.001

Note: Robust standard errors are in the parentheses.

           All models include a constant term and year dummies.

           Chow tests, on DIRTY*PAOC, reject the null strongly in all specifications.  
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TABLE 6. GMM REGRESSION RESULTS (DEPENDENT VARIABLE = 

OUTPUT OR TFP)

Model

A B C D

Difference System Difference System

OUTPUT TFP

PAOC 3.1010   

(2.206)
-4.3656*   

(1.832)
3.4269   

(2.064)
-2.8245**   

(1.052)

DIRTY*PAOC -2.7810   

(2.776)
2.6875

(1.957)
-2.8679   

(2.505)
-.2092   

(1.312)

DIRTY -.0494   

(.026)
.0046

(.022)

LABOR .1153   

(.113)
.1583***   

(.018)

CAPITAL .1050***   

(.031)
.1105***   

(.022)

INVESTMENT .0050   

(.014)
.0840***   

(.021)

MATERIAL .8083***   

(.114)
.6350***   

(.033)

No. of obs. 14080 14520 14080 14520

AR(1) -1.66 -1.33 -1.75 -1.65

Pr>z 0.097 0.185 0.081 0.099

AR(2) -1.60 -1.23 -1.33 -1.42

Pr>z 0.110 0.218 0.184 0.156

Hansen test 412.02 427.03 407.28 415.68

Prob>chi2 1.000 1.000 1.000 1.000

* p<0.05, ** p<0.01, *** p<0.001

Note: Robust standard errors are in the parentheses.

           All models include a constant term and year dummies.

           Chow tests, on DIRTY*PAOC, do not reject the null in all specifications.

              


